Copied to
clipboard

G = C23.47D20order 320 = 26·5

18th non-split extension by C23 of D20 acting via D20/D10=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C23.47D20, M4(2)⋊1Dic5, C4013(C2×C4), C406C43C2, C81(C2×Dic5), C405C417C2, (C2×C8).75D10, C20.52(C4⋊C4), C20.76(C2×Q8), (C2×C20).26Q8, (C2×C20).167D4, (C2×C4).149D20, (C5×M4(2))⋊7C4, C4.6(C4⋊Dic5), C2.3(C8⋊D10), (C2×C40).61C22, C4.42(C2×Dic10), (C2×C4).15Dic10, C22.56(C2×D20), (C2×M4(2)).1D5, C10.19(C8⋊C22), C56(M4(2)⋊C4), (C2×C20).772C23, C20.232(C22×C4), C2.4(C8.D10), (C22×C10).100D4, (C22×C4).133D10, (C10×M4(2)).1C2, C22.6(C4⋊Dic5), C4.27(C22×Dic5), C10.20(C8.C22), C4⋊Dic5.284C22, (C22×C20).180C22, C23.21D10.17C2, C10.73(C2×C4⋊C4), C2.14(C2×C4⋊Dic5), (C2×C10).44(C4⋊C4), (C2×C20).273(C2×C4), (C2×C10).162(C2×D4), (C2×C4⋊Dic5).40C2, (C2×C4).21(C2×Dic5), (C2×C4).720(C22×D5), SmallGroup(320,748)

Series: Derived Chief Lower central Upper central

C1C20 — C23.47D20
C1C5C10C2×C10C2×C20C4⋊Dic5C2×C4⋊Dic5 — C23.47D20
C5C10C20 — C23.47D20
C1C22C22×C4C2×M4(2)

Generators and relations for C23.47D20
 G = < a,b,c,d,e | a2=b2=c2=1, d20=c, e2=cb=bc, ab=ba, dad-1=eae-1=ac=ca, bd=db, be=eb, cd=dc, ce=ec, ede-1=d19 >

Subgroups: 382 in 118 conjugacy classes, 71 normal (29 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C22, C5, C8, C2×C4, C2×C4, C2×C4, C23, C10, C10, C42, C22⋊C4, C4⋊C4, C2×C8, M4(2), C22×C4, C22×C4, Dic5, C20, C20, C2×C10, C2×C10, C2×C10, C4.Q8, C2.D8, C2×C4⋊C4, C42⋊C2, C2×M4(2), C40, C2×Dic5, C2×C20, C2×C20, C22×C10, M4(2)⋊C4, C4×Dic5, C4⋊Dic5, C4⋊Dic5, C4⋊Dic5, C23.D5, C2×C40, C5×M4(2), C22×Dic5, C22×C20, C406C4, C405C4, C2×C4⋊Dic5, C23.21D10, C10×M4(2), C23.47D20
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, D5, C4⋊C4, C22×C4, C2×D4, C2×Q8, Dic5, D10, C2×C4⋊C4, C8⋊C22, C8.C22, Dic10, D20, C2×Dic5, C22×D5, M4(2)⋊C4, C4⋊Dic5, C2×Dic10, C2×D20, C22×Dic5, C8⋊D10, C8.D10, C2×C4⋊Dic5, C23.47D20

Smallest permutation representation of C23.47D20
On 160 points
Generators in S160
(1 109)(2 90)(3 111)(4 92)(5 113)(6 94)(7 115)(8 96)(9 117)(10 98)(11 119)(12 100)(13 81)(14 102)(15 83)(16 104)(17 85)(18 106)(19 87)(20 108)(21 89)(22 110)(23 91)(24 112)(25 93)(26 114)(27 95)(28 116)(29 97)(30 118)(31 99)(32 120)(33 101)(34 82)(35 103)(36 84)(37 105)(38 86)(39 107)(40 88)(41 149)(42 130)(43 151)(44 132)(45 153)(46 134)(47 155)(48 136)(49 157)(50 138)(51 159)(52 140)(53 121)(54 142)(55 123)(56 144)(57 125)(58 146)(59 127)(60 148)(61 129)(62 150)(63 131)(64 152)(65 133)(66 154)(67 135)(68 156)(69 137)(70 158)(71 139)(72 160)(73 141)(74 122)(75 143)(76 124)(77 145)(78 126)(79 147)(80 128)
(1 109)(2 110)(3 111)(4 112)(5 113)(6 114)(7 115)(8 116)(9 117)(10 118)(11 119)(12 120)(13 81)(14 82)(15 83)(16 84)(17 85)(18 86)(19 87)(20 88)(21 89)(22 90)(23 91)(24 92)(25 93)(26 94)(27 95)(28 96)(29 97)(30 98)(31 99)(32 100)(33 101)(34 102)(35 103)(36 104)(37 105)(38 106)(39 107)(40 108)(41 129)(42 130)(43 131)(44 132)(45 133)(46 134)(47 135)(48 136)(49 137)(50 138)(51 139)(52 140)(53 141)(54 142)(55 143)(56 144)(57 145)(58 146)(59 147)(60 148)(61 149)(62 150)(63 151)(64 152)(65 153)(66 154)(67 155)(68 156)(69 157)(70 158)(71 159)(72 160)(73 121)(74 122)(75 123)(76 124)(77 125)(78 126)(79 127)(80 128)
(1 21)(2 22)(3 23)(4 24)(5 25)(6 26)(7 27)(8 28)(9 29)(10 30)(11 31)(12 32)(13 33)(14 34)(15 35)(16 36)(17 37)(18 38)(19 39)(20 40)(41 61)(42 62)(43 63)(44 64)(45 65)(46 66)(47 67)(48 68)(49 69)(50 70)(51 71)(52 72)(53 73)(54 74)(55 75)(56 76)(57 77)(58 78)(59 79)(60 80)(81 101)(82 102)(83 103)(84 104)(85 105)(86 106)(87 107)(88 108)(89 109)(90 110)(91 111)(92 112)(93 113)(94 114)(95 115)(96 116)(97 117)(98 118)(99 119)(100 120)(121 141)(122 142)(123 143)(124 144)(125 145)(126 146)(127 147)(128 148)(129 149)(130 150)(131 151)(132 152)(133 153)(134 154)(135 155)(136 156)(137 157)(138 158)(139 159)(140 160)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 129 89 61)(2 148 90 80)(3 127 91 59)(4 146 92 78)(5 125 93 57)(6 144 94 76)(7 123 95 55)(8 142 96 74)(9 121 97 53)(10 140 98 72)(11 159 99 51)(12 138 100 70)(13 157 101 49)(14 136 102 68)(15 155 103 47)(16 134 104 66)(17 153 105 45)(18 132 106 64)(19 151 107 43)(20 130 108 62)(21 149 109 41)(22 128 110 60)(23 147 111 79)(24 126 112 58)(25 145 113 77)(26 124 114 56)(27 143 115 75)(28 122 116 54)(29 141 117 73)(30 160 118 52)(31 139 119 71)(32 158 120 50)(33 137 81 69)(34 156 82 48)(35 135 83 67)(36 154 84 46)(37 133 85 65)(38 152 86 44)(39 131 87 63)(40 150 88 42)

G:=sub<Sym(160)| (1,109)(2,90)(3,111)(4,92)(5,113)(6,94)(7,115)(8,96)(9,117)(10,98)(11,119)(12,100)(13,81)(14,102)(15,83)(16,104)(17,85)(18,106)(19,87)(20,108)(21,89)(22,110)(23,91)(24,112)(25,93)(26,114)(27,95)(28,116)(29,97)(30,118)(31,99)(32,120)(33,101)(34,82)(35,103)(36,84)(37,105)(38,86)(39,107)(40,88)(41,149)(42,130)(43,151)(44,132)(45,153)(46,134)(47,155)(48,136)(49,157)(50,138)(51,159)(52,140)(53,121)(54,142)(55,123)(56,144)(57,125)(58,146)(59,127)(60,148)(61,129)(62,150)(63,131)(64,152)(65,133)(66,154)(67,135)(68,156)(69,137)(70,158)(71,139)(72,160)(73,141)(74,122)(75,143)(76,124)(77,145)(78,126)(79,147)(80,128), (1,109)(2,110)(3,111)(4,112)(5,113)(6,114)(7,115)(8,116)(9,117)(10,118)(11,119)(12,120)(13,81)(14,82)(15,83)(16,84)(17,85)(18,86)(19,87)(20,88)(21,89)(22,90)(23,91)(24,92)(25,93)(26,94)(27,95)(28,96)(29,97)(30,98)(31,99)(32,100)(33,101)(34,102)(35,103)(36,104)(37,105)(38,106)(39,107)(40,108)(41,129)(42,130)(43,131)(44,132)(45,133)(46,134)(47,135)(48,136)(49,137)(50,138)(51,139)(52,140)(53,141)(54,142)(55,143)(56,144)(57,145)(58,146)(59,147)(60,148)(61,149)(62,150)(63,151)(64,152)(65,153)(66,154)(67,155)(68,156)(69,157)(70,158)(71,159)(72,160)(73,121)(74,122)(75,123)(76,124)(77,125)(78,126)(79,127)(80,128), (1,21)(2,22)(3,23)(4,24)(5,25)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40)(41,61)(42,62)(43,63)(44,64)(45,65)(46,66)(47,67)(48,68)(49,69)(50,70)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76)(57,77)(58,78)(59,79)(60,80)(81,101)(82,102)(83,103)(84,104)(85,105)(86,106)(87,107)(88,108)(89,109)(90,110)(91,111)(92,112)(93,113)(94,114)(95,115)(96,116)(97,117)(98,118)(99,119)(100,120)(121,141)(122,142)(123,143)(124,144)(125,145)(126,146)(127,147)(128,148)(129,149)(130,150)(131,151)(132,152)(133,153)(134,154)(135,155)(136,156)(137,157)(138,158)(139,159)(140,160), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,129,89,61)(2,148,90,80)(3,127,91,59)(4,146,92,78)(5,125,93,57)(6,144,94,76)(7,123,95,55)(8,142,96,74)(9,121,97,53)(10,140,98,72)(11,159,99,51)(12,138,100,70)(13,157,101,49)(14,136,102,68)(15,155,103,47)(16,134,104,66)(17,153,105,45)(18,132,106,64)(19,151,107,43)(20,130,108,62)(21,149,109,41)(22,128,110,60)(23,147,111,79)(24,126,112,58)(25,145,113,77)(26,124,114,56)(27,143,115,75)(28,122,116,54)(29,141,117,73)(30,160,118,52)(31,139,119,71)(32,158,120,50)(33,137,81,69)(34,156,82,48)(35,135,83,67)(36,154,84,46)(37,133,85,65)(38,152,86,44)(39,131,87,63)(40,150,88,42)>;

G:=Group( (1,109)(2,90)(3,111)(4,92)(5,113)(6,94)(7,115)(8,96)(9,117)(10,98)(11,119)(12,100)(13,81)(14,102)(15,83)(16,104)(17,85)(18,106)(19,87)(20,108)(21,89)(22,110)(23,91)(24,112)(25,93)(26,114)(27,95)(28,116)(29,97)(30,118)(31,99)(32,120)(33,101)(34,82)(35,103)(36,84)(37,105)(38,86)(39,107)(40,88)(41,149)(42,130)(43,151)(44,132)(45,153)(46,134)(47,155)(48,136)(49,157)(50,138)(51,159)(52,140)(53,121)(54,142)(55,123)(56,144)(57,125)(58,146)(59,127)(60,148)(61,129)(62,150)(63,131)(64,152)(65,133)(66,154)(67,135)(68,156)(69,137)(70,158)(71,139)(72,160)(73,141)(74,122)(75,143)(76,124)(77,145)(78,126)(79,147)(80,128), (1,109)(2,110)(3,111)(4,112)(5,113)(6,114)(7,115)(8,116)(9,117)(10,118)(11,119)(12,120)(13,81)(14,82)(15,83)(16,84)(17,85)(18,86)(19,87)(20,88)(21,89)(22,90)(23,91)(24,92)(25,93)(26,94)(27,95)(28,96)(29,97)(30,98)(31,99)(32,100)(33,101)(34,102)(35,103)(36,104)(37,105)(38,106)(39,107)(40,108)(41,129)(42,130)(43,131)(44,132)(45,133)(46,134)(47,135)(48,136)(49,137)(50,138)(51,139)(52,140)(53,141)(54,142)(55,143)(56,144)(57,145)(58,146)(59,147)(60,148)(61,149)(62,150)(63,151)(64,152)(65,153)(66,154)(67,155)(68,156)(69,157)(70,158)(71,159)(72,160)(73,121)(74,122)(75,123)(76,124)(77,125)(78,126)(79,127)(80,128), (1,21)(2,22)(3,23)(4,24)(5,25)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40)(41,61)(42,62)(43,63)(44,64)(45,65)(46,66)(47,67)(48,68)(49,69)(50,70)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76)(57,77)(58,78)(59,79)(60,80)(81,101)(82,102)(83,103)(84,104)(85,105)(86,106)(87,107)(88,108)(89,109)(90,110)(91,111)(92,112)(93,113)(94,114)(95,115)(96,116)(97,117)(98,118)(99,119)(100,120)(121,141)(122,142)(123,143)(124,144)(125,145)(126,146)(127,147)(128,148)(129,149)(130,150)(131,151)(132,152)(133,153)(134,154)(135,155)(136,156)(137,157)(138,158)(139,159)(140,160), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,129,89,61)(2,148,90,80)(3,127,91,59)(4,146,92,78)(5,125,93,57)(6,144,94,76)(7,123,95,55)(8,142,96,74)(9,121,97,53)(10,140,98,72)(11,159,99,51)(12,138,100,70)(13,157,101,49)(14,136,102,68)(15,155,103,47)(16,134,104,66)(17,153,105,45)(18,132,106,64)(19,151,107,43)(20,130,108,62)(21,149,109,41)(22,128,110,60)(23,147,111,79)(24,126,112,58)(25,145,113,77)(26,124,114,56)(27,143,115,75)(28,122,116,54)(29,141,117,73)(30,160,118,52)(31,139,119,71)(32,158,120,50)(33,137,81,69)(34,156,82,48)(35,135,83,67)(36,154,84,46)(37,133,85,65)(38,152,86,44)(39,131,87,63)(40,150,88,42) );

G=PermutationGroup([[(1,109),(2,90),(3,111),(4,92),(5,113),(6,94),(7,115),(8,96),(9,117),(10,98),(11,119),(12,100),(13,81),(14,102),(15,83),(16,104),(17,85),(18,106),(19,87),(20,108),(21,89),(22,110),(23,91),(24,112),(25,93),(26,114),(27,95),(28,116),(29,97),(30,118),(31,99),(32,120),(33,101),(34,82),(35,103),(36,84),(37,105),(38,86),(39,107),(40,88),(41,149),(42,130),(43,151),(44,132),(45,153),(46,134),(47,155),(48,136),(49,157),(50,138),(51,159),(52,140),(53,121),(54,142),(55,123),(56,144),(57,125),(58,146),(59,127),(60,148),(61,129),(62,150),(63,131),(64,152),(65,133),(66,154),(67,135),(68,156),(69,137),(70,158),(71,139),(72,160),(73,141),(74,122),(75,143),(76,124),(77,145),(78,126),(79,147),(80,128)], [(1,109),(2,110),(3,111),(4,112),(5,113),(6,114),(7,115),(8,116),(9,117),(10,118),(11,119),(12,120),(13,81),(14,82),(15,83),(16,84),(17,85),(18,86),(19,87),(20,88),(21,89),(22,90),(23,91),(24,92),(25,93),(26,94),(27,95),(28,96),(29,97),(30,98),(31,99),(32,100),(33,101),(34,102),(35,103),(36,104),(37,105),(38,106),(39,107),(40,108),(41,129),(42,130),(43,131),(44,132),(45,133),(46,134),(47,135),(48,136),(49,137),(50,138),(51,139),(52,140),(53,141),(54,142),(55,143),(56,144),(57,145),(58,146),(59,147),(60,148),(61,149),(62,150),(63,151),(64,152),(65,153),(66,154),(67,155),(68,156),(69,157),(70,158),(71,159),(72,160),(73,121),(74,122),(75,123),(76,124),(77,125),(78,126),(79,127),(80,128)], [(1,21),(2,22),(3,23),(4,24),(5,25),(6,26),(7,27),(8,28),(9,29),(10,30),(11,31),(12,32),(13,33),(14,34),(15,35),(16,36),(17,37),(18,38),(19,39),(20,40),(41,61),(42,62),(43,63),(44,64),(45,65),(46,66),(47,67),(48,68),(49,69),(50,70),(51,71),(52,72),(53,73),(54,74),(55,75),(56,76),(57,77),(58,78),(59,79),(60,80),(81,101),(82,102),(83,103),(84,104),(85,105),(86,106),(87,107),(88,108),(89,109),(90,110),(91,111),(92,112),(93,113),(94,114),(95,115),(96,116),(97,117),(98,118),(99,119),(100,120),(121,141),(122,142),(123,143),(124,144),(125,145),(126,146),(127,147),(128,148),(129,149),(130,150),(131,151),(132,152),(133,153),(134,154),(135,155),(136,156),(137,157),(138,158),(139,159),(140,160)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,129,89,61),(2,148,90,80),(3,127,91,59),(4,146,92,78),(5,125,93,57),(6,144,94,76),(7,123,95,55),(8,142,96,74),(9,121,97,53),(10,140,98,72),(11,159,99,51),(12,138,100,70),(13,157,101,49),(14,136,102,68),(15,155,103,47),(16,134,104,66),(17,153,105,45),(18,132,106,64),(19,151,107,43),(20,130,108,62),(21,149,109,41),(22,128,110,60),(23,147,111,79),(24,126,112,58),(25,145,113,77),(26,124,114,56),(27,143,115,75),(28,122,116,54),(29,141,117,73),(30,160,118,52),(31,139,119,71),(32,158,120,50),(33,137,81,69),(34,156,82,48),(35,135,83,67),(36,154,84,46),(37,133,85,65),(38,152,86,44),(39,131,87,63),(40,150,88,42)]])

62 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E···4L5A5B8A8B8C8D10A···10F10G10H10I10J20A···20H20I20J20K20L40A···40P
order12222244444···455888810···101010101020···202020202040···40
size111122222220···202244442···244442···244444···4

62 irreducible representations

dim111111122222222224444
type+++++++-+++-+-+++-+-
imageC1C2C2C2C2C2C4D4Q8D4D5D10Dic5D10Dic10D20D20C8⋊C22C8.C22C8⋊D10C8.D10
kernelC23.47D20C406C4C405C4C2×C4⋊Dic5C23.21D10C10×M4(2)C5×M4(2)C2×C20C2×C20C22×C10C2×M4(2)C2×C8M4(2)C22×C4C2×C4C2×C4C23C10C10C2C2
# reps122111812124828441144

Matrix representation of C23.47D20 in GL6(𝔽41)

100000
010000
0040000
0004000
000010
000001
,
4000000
0400000
0040000
0004000
0000400
0000040
,
100000
010000
0040000
0004000
0000400
0000040
,
1400000
3660000
000010
000001
00403900
001100
,
3290000
090000
0000236
00002118
00183500
00202300

G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[1,36,0,0,0,0,40,6,0,0,0,0,0,0,0,0,40,1,0,0,0,0,39,1,0,0,1,0,0,0,0,0,0,1,0,0],[32,0,0,0,0,0,9,9,0,0,0,0,0,0,0,0,18,20,0,0,0,0,35,23,0,0,23,21,0,0,0,0,6,18,0,0] >;

C23.47D20 in GAP, Magma, Sage, TeX

C_2^3._{47}D_{20}
% in TeX

G:=Group("C2^3.47D20");
// GroupNames label

G:=SmallGroup(320,748);
// by ID

G=gap.SmallGroup(320,748);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,422,387,100,1684,102,12550]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=1,d^20=c,e^2=c*b=b*c,a*b=b*a,d*a*d^-1=e*a*e^-1=a*c=c*a,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^19>;
// generators/relations

׿
×
𝔽